Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
PLoS One ; 18(5): e0285991, 2023.
Article in English | MEDLINE | ID: covidwho-20234386

ABSTRACT

As findings on the epidemiological and genetic risk factors for coronavirus disease-19 (COVID-19) continue to accrue, their joint power and significance for prospective clinical applications remains virtually unexplored. Severity of symptoms in individuals affected by COVID-19 spans a broad spectrum, reflective of heterogeneous host susceptibilities across the population. Here, we assessed the utility of epidemiological risk factors to predict disease severity prospectively, and interrogated genetic information (polygenic scores) to evaluate whether they can provide further insights into symptom heterogeneity. A standard model was trained to predict severe COVID-19 based on principal component analysis and logistic regression based on information from eight known medical risk factors for COVID-19 measured before 2018. In UK Biobank participants of European ancestry, the model achieved a relatively high performance (area under the receiver operating characteristic curve ~90%). Polygenic scores for COVID-19 computed from summary statistics of the Covid19 Host Genetics Initiative displayed significant associations with COVID-19 in the UK Biobank (p-values as low as 3.96e-9, all with R2 under 1%), but were unable to robustly improve predictive performance of the non-genetic factors. However, error analysis of the non-genetic models suggested that affected individuals misclassified by the medical risk factors (predicted low risk but actual high risk) display a small but consistent increase in polygenic scores. Overall, the results indicate that simple models based on health-related epidemiological factors measured years before COVID-19 onset can achieve high predictive power. Associations between COVID-19 and genetic factors were statistically robust, but currently they have limited predictive power for translational settings. Despite that, the outcomes also suggest that severely affected cases with a medical history profile of low risk might be partly explained by polygenic factors, prompting development of boosted COVID-19 polygenic models based on new data and tools to aid risk-prediction.


Subject(s)
COVID-19 , Humans , Prospective Studies , COVID-19/epidemiology , COVID-19/genetics , Risk Factors , Logistic Models , Multifactorial Inheritance/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease
2.
Transl Psychiatry ; 13(1): 189, 2023 06 06.
Article in English | MEDLINE | ID: covidwho-20232070

ABSTRACT

Despite the high contagion and mortality rates that have accompanied the coronavirus disease-19 (COVID-19) pandemic, the clinical presentation of the syndrome varies greatly from one individual to another. Potential host factors that accompany greater risk from COVID-19 have been sought and schizophrenia (SCZ) patients seem to present more severe COVID-19 than control counterparts, with certain gene expression similarities between psychiatric and COVID-19 patients reported. We used summary statistics from the last SCZ, bipolar disorder (BD), and depression (DEP) meta-analyses available on the Psychiatric Genomics Consortium webpage to calculate polygenic risk scores (PRSs) for a target sample of 11,977 COVID-19 cases and 5943 subjects with unknown COVID-19 status. Linkage disequilibrium score (LDSC) regression analysis was performed when positive associations were obtained from the PRS analysis. The SCZ PRS was a significant predictor in the case/control, symptomatic/asymptomatic, and hospitalization/no hospitalization analyses in the total and female samples; and of symptomatic/asymptomatic status in men. No significant associations were found for the BD or DEP PRS or in the LDSC regression analysis. SNP-based genetic risk for SCZ, but not for BD or DEP, may be associated with higher risk of SARS-CoV-2 infection and COVID-19 severity, especially among women; however, predictive accuracy barely exceeded chance level. We believe that the inclusion of sexual loci and rare variations in the analysis of genomic overlap between SCZ and COVID-19 will help to elucidate the genetic commonalities between these conditions.


Subject(s)
Bipolar Disorder , COVID-19 , Schizophrenia , Male , Humans , Female , Schizophrenia/genetics , Schizophrenia/metabolism , Genetic Predisposition to Disease , COVID-19/genetics , SARS-CoV-2/genetics , Bipolar Disorder/metabolism , Multifactorial Inheritance , Genome-Wide Association Study
3.
Nat Commun ; 13(1): 7559, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2185827

ABSTRACT

High-dimensional omics datasets provide valuable resources to determine the causal role of molecular traits in mediating the path from genotype to phenotype. Making use of molecular quantitative trait loci (QTL) and genome-wide association study (GWAS) summary statistics, we propose a multivariable Mendelian randomization (MVMR) framework to quantify the proportion of the impact of the DNA methylome (DNAm) on complex traits that is propagated through the assayed transcriptome. Evaluating 50 complex traits, we find that on average at least 28.3% (95% CI: [26.9%-29.8%]) of DNAm-to-trait effects are mediated through (typically multiple) transcripts in the cis-region. Several regulatory mechanisms are hypothesized, including methylation of the promoter probe cg10385390 (chr1:8'022'505) increasing the risk for inflammatory bowel disease by reducing PARK7 expression. The proposed integrative framework can be extended to other omics layers to identify causal molecular chains, providing a powerful tool to map and interpret GWAS signals.


Subject(s)
DNA Methylation , Multifactorial Inheritance , DNA Methylation/genetics , Genome-Wide Association Study
4.
Nat Commun ; 13(1): 6336, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2087204

ABSTRACT

Genes with moderate to low expression heritability may explain a large proportion of complex trait etiology, but such genes cannot be sufficiently captured in conventional transcriptome-wide association studies (TWASs), partly due to the relatively small available reference datasets for developing expression genetic prediction models to capture the moderate to low genetically regulated components of gene expression. Here, we introduce a method, the Summary-level Unified Method for Modeling Integrated Transcriptome (SUMMIT), to improve the expression prediction model accuracy and the power of TWAS by using a large expression quantitative trait loci (eQTL) summary-level dataset. We apply SUMMIT to the eQTL summary-level data provided by the eQTLGen consortium. Through simulation studies and analyses of genome-wide association study summary statistics for 24 complex traits, we show that SUMMIT improves the accuracy of expression prediction in blood, successfully builds expression prediction models for genes with low expression heritability, and achieves higher statistical power than several benchmark methods. Finally, we conduct a case study of COVID-19 severity with SUMMIT and identify 11 likely causal genes associated with COVID-19 severity.


Subject(s)
COVID-19 , Transcriptome , Humans , Genome-Wide Association Study/methods , COVID-19/genetics , Quantitative Trait Loci/genetics , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease/genetics
5.
Hum Genomics ; 16(1): 37, 2022 09 08.
Article in English | MEDLINE | ID: covidwho-2038945

ABSTRACT

INTRODUCTION: A major challenge to enabling precision health at a global scale is the bias between those who enroll in state sponsored genomic research and those suffering from chronic disease. More than 30 million people have been genotyped by direct-to-consumer (DTC) companies such as 23andMe, Ancestry DNA, and MyHeritage, providing a potential mechanism for democratizing access to medical interventions and thus catalyzing improvements in patient outcomes as the cost of data acquisition drops. However, much of these data are sequestered in the initial provider network, without the ability for the scientific community to either access or validate. Here, we present a novel geno-pheno platform that integrates heterogeneous data sources and applies learnings to common chronic disease conditions including Type 2 diabetes (T2D) and hypertension. METHODS: We collected genotyped data from a novel DTC platform where participants upload their genotype data files and were invited to answer general health questionnaires regarding cardiometabolic traits over a period of 6 months. Quality control, imputation, and genome-wide association studies were performed on this dataset, and polygenic risk scores were built in a case-control setting using the BASIL algorithm. RESULTS: We collected data on N = 4,550 (389 cases / 4,161 controls) who reported being affected or previously affected for T2D and N = 4,528 (1,027 cases / 3,501 controls) for hypertension. We identified 164 out of 272 variants showing identical effect direction to previously reported genome-significant findings in Europeans. Performance metric of the PRS models was AUC = 0.68, which is comparable to previously published PRS models obtained with larger datasets including clinical biomarkers. DISCUSSION: DTC platforms have the potential of inverting research models of genome sequencing and phenotypic data acquisition. Quality control (QC) mechanisms proved to successfully enable traditional GWAS and PRS analyses. The direct participation of individuals has shown the potential to generate rich datasets enabling the creation of PRS cardiometabolic models. More importantly, federated learning of PRS from reuse of DTC data provides a mechanism for scaling precision health care delivery beyond the small number of countries who can afford to finance these efforts directly. CONCLUSIONS: The genetics of T2D and hypertension have been studied extensively in controlled datasets, and various polygenic risk scores (PRS) have been developed. We developed predictive tools for both phenotypes trained with heterogeneous genotypic and phenotypic data generated outside of the clinical environment and show that our methods can recapitulate prior findings with fidelity. From these observations, we conclude that it is possible to leverage DTC genetic repositories to identify individuals at risk of debilitating diseases based on their unique genetic landscape so that informed, timely clinical interventions can be incorporated.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Hypertension/genetics , Multifactorial Inheritance/genetics , Phenotype , Precision Medicine , Risk Factors
6.
Annu Rev Genomics Hum Genet ; 23: 569-589, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-2032558

ABSTRACT

Genome-wide association studies (GWASs) have successfully identified thousands of genetic variants that are reliably associated with human traits. Although GWASs are restricted to certain variant frequencies, they have improved our understanding of the genetic architecture of complex traits and diseases. The UK Biobank (UKBB) has brought substantial analytical opportunity and performance to association studies. The dramatic expansion of many GWAS sample sizes afforded by the inclusion of UKBB data has improved the power of estimation of effect sizes but, critically, has done so in a context where phenotypic depth and precision enable outcome dissection and the application of epidemiological approaches. However, at the same time, the availability of such a large, well-curated, and deeply measured population-based collection has the capacity to increase our exposure to the many complications and inferential complexities associated with GWASs and other analyses. In this review, we discuss the impact that UKBB has had in the GWAS era, some of the opportunities that it brings, and exemplar challenges that illustrate the reality of using data from this world-leading resource.


Subject(s)
Biological Specimen Banks , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , United Kingdom
7.
BMC Med ; 20(1): 314, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-2002177

ABSTRACT

BACKGROUND: Whether a genetic predisposition to psychiatric disorders is associated with coronavirus disease 2019 (COVID-19) is unknown. METHODS: Our analytic sample consisted of 287,123 white British participants in UK Biobank who were alive on 31 January 2020. We performed a genome-wide association study (GWAS) analysis for each psychiatric disorder (substance misuse, depression, anxiety, psychotic disorder, and stress-related disorders) in a randomly selected half of the study population ("base dataset"). For the other half ("target dataset"), the polygenic risk score (PRS) was calculated as a proxy of individuals' genetic predisposition to a given psychiatric phenotype using discovered genetic variants from the base dataset. Ascertainment of COVID-19 was based on the Public Health England dataset, inpatient hospital data, or death registers in UK Biobank. COVID-19 cases from hospitalization records or death records were considered "severe cases." The association between the PRS for psychiatric disorders and COVID-19 risk was examined using logistic regression. We also repeated PRS analyses based on publicly available GWAS summary statistics. RESULTS: A total of 143,562 participants (including 10,868 COVID-19 cases) were used for PRS analyses. A higher genetic predisposition to psychiatric disorders was associated with an increased risk of any COVID-19 and severe COVID-19. The adjusted odds ratio (OR) for any COVID-19 was 1.07 (95% confidence interval [CI] 1.02-1.13) and 1.06 (95% CI 1.01-1.11) among individuals with a high genetic risk (above the upper tertile of the PRS) for substance misuse and depression, respectively, compared with individuals with a low genetic risk (below the lower tertile). Slightly higher ORs were noted for severe COVID-19, and similar result patterns were obtained in analyses based on publicly available GWAS summary statistics. CONCLUSIONS: Our findings suggest a potential role of genetic factors in the observed phenotypic association between psychiatric disorders and COVID-19. Our data underscore the need for increased medical surveillance for this vulnerable population during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mental Disorders , Substance-Related Disorders , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Multifactorial Inheritance , Pandemics , Risk Factors , Substance-Related Disorders/epidemiology
8.
Sci Rep ; 12(1): 1891, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1671627

ABSTRACT

The COVID-19 pandemic has produced broad clinical manifestations, from asymptomatic infection to hospitalization and death. Despite progress from genomic and clinical epidemiology research, risk factors for developing severe COVID-19 are incompletely understood and identification of modifiable risk factors is desperately needed. We conducted linkage disequilibrium score regression (LDSR) analysis to estimate cross-trait genetic correlation between COVID-19 severity and various polygenic phenotypes. To attenuate the genetic contribution of smoking and BMI, we further conducted sensitivity analyses by pruning genomic regions associated with smoking/BMI and repeating LDSR analyses. We identified robust positive associations between the genetic architecture of severe COVID-19 and both BMI and smoking. We observed strong positive genetic correlation (rg) with diabetes (rg = 0.25) and shortness of breath walking on level ground (rg = 0.28) and novel protective associations with vitamin E (rg = - 0.53), calcium (rg = - 0.33), retinol (rg = - 0.59), Apolipoprotein A (rg = - 0.13), and HDL (rg = - 0.17), but no association with vitamin D (rg = - 0.02). Removing genomic regions associated with smoking and BMI generally attenuated the associations, but the associations with nutrient biomarkers persisted. This study provides a comprehensive assessment of the shared genetic architecture of COVID-19 severity and numerous clinical/physiologic parameters. Associations with blood and plasma-derived traits identified biomarkers for Mendelian randomization studies to explore causality and nominates therapeutic targets for clinical evaluation.


Subject(s)
COVID-19/genetics , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Body Mass Index , COVID-19/etiology , Diabetes Mellitus/genetics , Dyspnea/genetics , Female , Humans , Male , Mendelian Randomization Analysis , Multifactorial Inheritance , Nutrients , Patient Acuity , Phenotype , Regression Analysis , Risk Factors , Smoking/genetics
9.
Front Immunol ; 12: 673692, 2021.
Article in English | MEDLINE | ID: covidwho-1325525

ABSTRACT

In a perspective entitled 'From plant survival under severe stress to anti-viral human defense' we raised and justified the hypothesis that transcript level profiles of justified target genes established from in vitro somatic embryogenesis (SE) induction in plants as a reference compared to virus-induced profiles can identify differential virus signatures that link to harmful reprogramming. A standard profile of selected genes named 'ReprogVirus' was proposed for in vitro-scanning of early virus-induced reprogramming in critical primary infected cells/tissues as target trait. For data collection, the 'ReprogVirus platform' was initiated. This initiative aims to identify in a common effort across scientific boundaries critical virus footprints from diverse virus origins and variants as a basis for anti-viral strategy design. This approach is open for validation and extension. In the present study, we initiated validation by experimental transcriptome data available in public domain combined with advancing plant wet lab research. We compared plant-adapted transcriptomes according to 'RegroVirus' complemented by alternative oxidase (AOX) genes during de novo programming under SE-inducing conditions with in vitro corona virus-induced transcriptome profiles. This approach enabled identifying a major complex trait for early de novo programming during SARS-CoV-2 infection, called 'CoV-MAC-TED'. It consists of unbalanced ROS/RNS levels, which are connected to increased aerobic fermentation that links to alpha-tubulin-based cell restructuration and progression of cell cycle. We conclude that anti-viral/anti-SARS-CoV-2 strategies need to rigorously target 'CoV-MAC-TED' in primary infected nose and mouth cells through prophylactic and very early therapeutic strategies. We also discuss potential strategies in the view of the beneficial role of AOX for resilient behavior in plants. Furthermore, following the general observation that ROS/RNS equilibration/redox homeostasis is of utmost importance at the very beginning of viral infection, we highlight that 'de-stressing' disease and social handling should be seen as essential part of anti-viral/anti-SARS-CoV-2 strategies.


Subject(s)
Cellular Reprogramming/genetics , Multifactorial Inheritance/genetics , SARS-CoV-2/pathogenicity , Acetylserotonin O-Methyltransferase/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Cell Cycle/genetics , Databases, Genetic , Daucus carota/genetics , Daucus carota/growth & development , Fermentation , Gene Expression Profiling , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Tubulin/genetics , Viruses/pathogenicity
10.
Nature ; 600(7889): 472-477, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1301173

ABSTRACT

The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3-7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.


Subject(s)
COVID-19/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Host-Pathogen Interactions/genetics , Autoimmunity/genetics , Body Mass Index , COVID-19/virology , Critical Illness , Female , Geographic Mapping , Hospitalization , Humans , Inflammation/complications , Information Dissemination , Male , Multifactorial Inheritance , Racial Groups/genetics , SARS-CoV-2/pathogenicity , Smoking
11.
Genome Med ; 13(1): 83, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232437

ABSTRACT

BACKGROUND: While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture of complex human traits and diseases, understanding mechanisms that lead from genetic variation to pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to facilitate experimental testing of hypotheses and translation to clinical utility. RESULTS: Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of enrichment. This shared genetic architecture was examined across differing biological scales through incorporating data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database (interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus. Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2 compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity. CONCLUSIONS: Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches. The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/tbalmat/iCPAGdb .


Subject(s)
COVID-19/genetics , Databases, Nucleic Acid , Genetic Predisposition to Disease , Linkage Disequilibrium , Multifactorial Inheritance , Polymorphism, Single Nucleotide , SARS-CoV-2/genetics , Genome-Wide Association Study , Humans
12.
Elife ; 102021 03 15.
Article in English | MEDLINE | ID: covidwho-1196112

ABSTRACT

Measures of lung function are heritable, and thus, we sought to utilise genetics to propose drug-repurposing candidates that could improve respiratory outcomes. Lung function measures were found to be genetically correlated with seven druggable biochemical traits, with further evidence of a causal relationship between increased fasting glucose and diminished lung function. Moreover, we developed polygenic scores for lung function specifically within pathways with known drug targets and investigated their relationship with pulmonary phenotypes and gene expression in independent cohorts to prioritise individuals who may benefit from particular drug-repurposing opportunities. A transcriptome-wide association study (TWAS) of lung function was then performed which identified several drug-gene interactions with predicted lung function increasing modes of action. Drugs that regulate blood glucose were uncovered through both polygenic scoring and TWAS methodologies. In summary, we provided genetic justification for a number of novel drug-repurposing opportunities that could improve lung function.


Chronic respiratory disorders like asthma affect around 600 million people worldwide. Although these illnesses are widespread, they can have several different underlying causes, making them difficult to treat. Drugs that work well on one type of respiratory disorder may be completely ineffective on another. Understanding the biological and environmental factors that cause these illnesses will allow them to be treated more effectively by tailoring therapies to each patient. Reduced lung function is a factor in respiratory disorders and it can have many genetic causes. Studying the genes of patients with reduced lung function can reveal the genes involved, some of which may already be targets of existing drugs for other illnesses. So, could a patient's genetics be used to repurpose existing drugs to treat their respiratory disorders? Reay et al. combined three methods to link genetics and biological processes to the causes of reduced lung function. The results reveal several factors that could lead to new treatments. In one example, reduced lung function showed a link to genes associated with high blood sugar. As such, treatments used in diabetes might help improve lung function in some patients. Reay et al. also developed a scoring system that could predict the efficacy of a treatment based on a patient's genetics. The study suggests that COVID-19 infection could be affected by blood sugar levels too. Chronic respiratory disorders are a critical issue worldwide and have proven difficult to treat, but these results suggest a way to identify new therapies and target them to the right patients. The findings also support a connection between lung function and blood sugar levels. This implies that perhaps existing diabetes treatments ­ including diet and lifestyle changes aimed at reducing or limiting blood sugar ­ could be repurposed to treat respiratory disorders in some patients. The next step will be to perform clinical trials to test whether these therapies are in fact effective.


Subject(s)
Drug Repositioning/methods , Hyperglycemia/genetics , Lung Diseases/drug therapy , Lung Diseases/genetics , Blood Glucose/metabolism , Causality , Databases, Genetic , Genome-Wide Association Study/methods , Humans , Hyperglycemia/metabolism , Hyperglycemia/physiopathology , Lung/drug effects , Lung/physiology , Lung/physiopathology , Lung Diseases/metabolism , Lung Diseases/physiopathology , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Respiratory Function Tests/methods , Transcriptome
13.
Front Immunol ; 12: 653489, 2021.
Article in English | MEDLINE | ID: covidwho-1150694

ABSTRACT

The ongoing COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2 has affected all aspects of human society with a special focus on healthcare. Although older patients with preexisting chronic illnesses are more prone to develop severe complications, younger, healthy individuals might also exhibit serious manifestations. Previous studies directed to detect genetic susceptibility factors for earlier epidemics have provided evidence of certain protective variations. Following SARS-CoV-2 exposure, viral entry into cells followed by recognition and response by the innate immunity are key determinants of COVID-19 development. In the present review our aim was to conduct a thorough review of the literature on the role of single nucleotide polymorphisms (SNPs) as key agents affecting the viral entry of SARS-CoV-2 and innate immunity. Several SNPs within the scope of our approach were found to alter susceptibility to various bacterial and viral infections. Additionally, a multitude of studies confirmed genetic associations between the analyzed genes and autoimmune diseases, underlining the versatile immune consequences of these variants. Based on confirmed associations it is highly plausible that the SNPs affecting viral entry and innate immunity might confer altered susceptibility to SARS-CoV-2 infection and its complex clinical consequences. Anticipating several COVID-19 genomic susceptibility loci based on the ongoing genome wide association studies, our review also proposes that a well-established polygenic risk score would be able to clinically leverage the acquired knowledge.


Subject(s)
COVID-19/genetics , COVID-19/immunology , Germ Cells/immunology , SARS-CoV-2/physiology , COVID-19/virology , Genetic Predisposition to Disease , Humans , Immunity, Innate , Multifactorial Inheritance , Virus Internalization
14.
Plant Biotechnol J ; 19(8): 1670-1678, 2021 08.
Article in English | MEDLINE | ID: covidwho-1145340

ABSTRACT

The generation of new ideas and scientific hypotheses is often the result of extensive literature and database searches, but, with the growing wealth of public and private knowledge, the process of searching diverse and interconnected data to generate new insights into genes, gene networks, traits and diseases is becoming both more complex and more time-consuming. To guide this technically challenging data integration task and to make gene discovery and hypotheses generation easier for researchers, we have developed a comprehensive software package called KnetMiner which is open-source and containerized for easy use. KnetMiner is an integrated, intelligent, interactive gene and gene network discovery platform that supports scientists explore and understand the biological stories of complex traits and diseases across species. It features fast algorithms for generating rich interactive gene networks and prioritizing candidate genes based on knowledge mining approaches. KnetMiner is used in many plant science institutions and has been adopted by several plant breeding organizations to accelerate gene discovery. The software is generic and customizable and can therefore be readily applied to new species and data types; for example, it has been applied to pest insects and fungal pathogens; and most recently repurposed to support COVID-19 research. Here, we give an overview of the main approaches behind KnetMiner and we report plant-centric case studies for identifying genes, gene networks and trait relationships in Triticum aestivum (bread wheat), as well as, an evidence-based approach to rank candidate genes under a large Arabidopsis thaliana QTL. KnetMiner is available at: https://knetminer.org.


Subject(s)
COVID-19 , Multifactorial Inheritance , Genetic Association Studies , Humans , Plant Breeding , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL